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Abstract

We conducted a laboratory experiment to investigate individual ability

to process conflicting social information that could be potentially irrelevant,

in which each subject independently draws a ball from one of two digital

urns and receives information reported by another subject who may or may

not have drawn from the same urn. We find that 71% of subjects who re-

ceive new information misattribute the source of the information compared to

Bayesian updating. Conflicting information is overly assumed as irrelevant,

and confirming information is overly assumed as relevant. This asymmetry is

robust even when allowing for subjects to perceive others as reporting non-

informative signals. Attributing conflicting information as irrelevant may form

the foundation of stable echo chambers or equilibria where additional infor-

mation has no effect on beliefs.
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1 Introduction

Information processing plays an important role in many life decisions, but the same

information may not always be interpreted the same way. For example, a stronger

belief in science has been correlated with willingness to wearing a mask during the

COVID-19 pandemic, while those who identify with masculinity norms are less will-

ing to do so (Stosic et al., 2021; Palmer and Peterson, 2020). Regarding climate

change, individuals have different beliefs despite scientific consensus, and these dif-

ferences persist for long periods of time (Kahan et al., 2011, 2012; Fryer Jr et al.,

2019). Some even believe the earth is flat despite abundant evidence, leading to

the formation of apparent echo chambers (Brazil, 2020). On an individual level,

receiving a bad grade may lead some to pursue non-STEM degrees, while others

may see it as a challenge to persist (Koszegi et al., forthcoming; Harris et al., 2020).

In general, a failure to update beliefs in the face of conflicting information may also

lead some to have overconfidence in personal ability, leading individuals to pursue

self-employment (Camerer and Lovallo, 1999; Koellinger et al., 2007) or make poor

financial decisions (Barber and Odean, 2001; Malmendier and Tate, 2008).

One possibility for these divergent interpretations is that personal experience

and prior beliefs may play a role when processing new information. When infor-

mation could be potentially untrustworthy or irrelevant, individuals may be overly

inclined to discount it entirely when it conflicts with their prior beliefs. For ex-

ample, if new information conflicts with prior beliefs, people may suspect that it

is driven by opposing political or commercial interests and ignore it. In contrast,

when new information confirms prior beliefs, it may be much harder to account for
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the possibility that the information is untrustworthy. As Bayes’ Rules implies we

should still update our posteriors even if new information is noisy, incorrect beliefs

persists for much longer if people ignore information because it may be irrelevant.1

This process could lead to the formation and persistence of echo chambers, where

conflicting information may be essentially disregarded.

In this paper, we examine a laboratory experiment investigating people’s abil-

ity to process new information from other humans, and study the difference in

belief updating when new information aligns with or is against prior information.

Specifically, we employ a two step procedure, in which subjects first draw objective

information about one of two independent urns, and use this information to update

beliefs about the state of that urn. Then, each subject learns the stated belief of

another randomly chosen subject. However, the second subject’s urn may or may

not be the same as the first subject, allowing for the possibility for the information

to be viewed as irrelevant to the assigned urn.

In the face of conflicting information, a subject should correctly infer that the

other subject is more likely to have drawn from a different urn. However, this does

not mean that the other subject could not have drawn from the same urn, just

that it is less likely. In our neutral context of drawing balls from urns, we docu-

ment that individuals asymmetrically update beliefs for conflicting and confirming

information. When faced with conflicting information, subjects appear to overly

attribute the source as coming from the other (irrelevant) urn. Conversely, in the

face of confirming information, subjects are comparatively more likely to attribute

1Or worse, incorporate non-informative signals as information, as seen in Fryer Jr et al. (2019)
and discussed below.
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it to their own (assigned) urn.

Empirically, there is a large literature showing individuals do not perfectly

Bayesian update their beliefs (Tversky and Kahneman, 1973; Grether, 1980; Holt

and Smith, 2009), but more recently the literature has experimentally explored

whether individuals asymmetrically update their beliefs.2 One strand of this litera-

ture has focused on the asymmetric updating of personal attributes such as beauty

or intelligence, as these estimates tend to be biased on average and may impact im-

portant decisions such as career choice. The results have been mixed, with Eil and

Rao (2011), Ertac (2011), Grossman and Owens (2012), Möbius et al. (2014), and

Coutts (2019) finding evidence that information about personal attributes leads

to asymmetric updating, whereas Gotthard-Real (2017), Buser et al. (2018), and

Schwardmann and Van der Weele (2019) finding no asymmetric updating about

personal attributes.

Asymmetric updating of personal attributes is an important question, but many

policy relevant issues are not inherently egocentric, such as climate change or health

risks in a pandemic. In these settings, information does not pertain to only the

receiver, but also to the state of the world. However, experimentally altering these

important beliefs may be difficult, as the subject may have strong priors from a

large amount of information (or disinformation).In addition, although researchers

can experimentally vary information provided, it may be more difficult to manipulate

subjects’ perceptions of information source objectivity without deception (Ortmann

and Hertwig (2002)), which is of central importance to this paper. Thus, we seek

2It is worth noting that psychology had noted a similar process as a subset of “confirmation
bias” outside of a Bayesian framework, c.f. Lord et al. (1979).
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to explore the asymmetric updating of beliefs in a more context-neutral or financial

setting, to give a better picture of how initial belief evolution occurs. This also

allows for a mixture of objective and social information to be analyzed as well.

Yet this paper is not the first to explore asymmetric updating in a financial or

neutral context. Coutts (2019) tests for asymmetric updating across ego relevant,

financial, and context-neutral settings and found consistent asymmetric updating

across all three domains. Barron (2021) also focuses on the financial domain, but

finds no evidence of asymmetric updating in aggregate beliefs, though note substan-

tial heterogeneity in belief updating processes.

However, in these papers, all the information was non-social, being provided by a

computer rather than another human. In comparison, this paper provides evidence

that socially-processed information also results in asymmetric updating. This is not

ex ante clear, as social information could be primarily ignored if one believed others

were incapable of processing information. In addition, due to the two urn structure

of the experimental design, we can further distinguish causes of the confirmation bias

– specifically, whether subjects (i) process the new information but misattribute the

source urn or (ii) completely disregard the conflicting information.

Yet ours is not the first work to study social signals and belief evolution. Oprea

and Yuksel (2022) also primarily explores social evolution of beliefs in a laboratory

context. The paper finds strong evidence for motivated belief updating in personal

attribute settings – updating beliefs that subjects may have additional nonpecuniary

incentives to believe as true. In the paper’s primary experiments, each subject takes

an intelligence quiz, and then is paired with a partner on the same side of the median
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score. Each subject reports their beliefs of their pair’s intelligence in real time, first

individually, and then (in the primary treatment group) with full information of

their partner’s real time belief. Overall, they find that the ”optimistic” partner

does not move downward in response to the ”pessimistic” partner’s belief, resulting

in persistent overconfidence. Furthermore, their paper demonstrates that objective

signals are treated in a Bayesian manner, with positive and negative news being

weighted equally.

In comparison, our paper focuses on 1-way social communication, such as receiv-

ing a news report on climate change written by a journalist or a notice about mask

effectiveness written by a government official.3 One benefit of this focus is that we

can isolate social belief evolution of individual beliefs rather than social signalling

concerns as demonstrated in Burks et al. (2013).4 Specifically, in 2-way communi-

cation, a “pessimistic” belief about group’s intelligence status may be perceived as

an insult.5

As for possible theoretic underpinnings for asymmetric updating, Fryer Jr et al.

(2019) provides a model to depict why polarization in people’s beliefs would occur in

many settings where information is open to interpretation. An important theoret-

ical prediction from this paper is that polarization increases when people interpret

a (non-informative) signal as evidence for a particular state based on their current

beliefs. In addition, their online Amazon Mechanical Turk experiments show that

3Of course, many important beliefs are more likely to involve 2-way social interaction, such as
a committee collating information to make a joint decision or discussions via social media.

4As Oprea and Yuksel (2022) states, ”Further experiments designed prospectively to examine
the relationship between signal ambiguity and social exchange of beliefs in more depth seems like
an important next step in this agenda.”

5However, in many contexts in the real world, this preference to cater to extreme views may be
an important determinant for the creation of echo chambers.
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when subjects observe a sequence of information, they indeed form biased interpre-

tation of evidence in the face of ambiguous ones and results in polarization in issues

like climate change and death penalty.

In comparison to Fryer Jr et al. (2019), we provide three main contributions.

First, the polarizing beliefs in Fryer Jr et al. (2019) stem from non-informative

signals that are incorrectly inferred to be informative. In our paper, we explore

how individuals incorporate informative signals that are conflicting to their current

beliefs, rather than how they misinterpret non-informative signals. Thus, even in

purely informative spaces, we show improper Bayesian updating. Secondly, in our

experiment, we explore a politically neutral context with objective outcomes, as

opposed to the politically charged context with a subjective scale.6

Collectively, these results can potentially explain why, despite the general scien-

tific consensus on climate change, individuals may form beliefs that cause them to

ignore this information. In other words, given the abundance of information support-

ing climate change, it may be that climate deniers instead infer that this conflicting

information is instead from an untrustworthy or irrelevant source, as suggested by

survey evidence from Rowland et al. (2022). However, we believe extending research

to matters closely connected to public policy, and further exploring the role of social

signalling in echo chambers, remains an important frontier for future work.

Our paper can also be viewed as an extension of the rich literature of confirmation

bias, which has been documented in economics (Babcock et al., 1995) and psychology

(Lord et al., 1979). Confirmation bias describes people’s tendency to interpret the

6As the scale employed in Fryer Jr et al. (2019) may be interpreted differently based on prior
beliefs.
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information in a fashion that is biased toward confirming one’s prior belief. Glaeser

and Sunstein (2013) introduces a model to show how balanced information can

lead to polarization. They suggest that the same information have diametrically

opposite effect for those who have confirming and conflicting priors. Our experiment

provides additional experimental evidence and illustrates a possible mechanism for

this phenomenon – information source misattribution.
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2 Experimental Design

There are ten rounds in the experiment, each round consists of two phases. In

each round, the subject is independently randomly assigned one of two digital urns,

urn A or urn B, which have been themselves randomized (described in more detail

in subsections below). In the first phase, the subject receives a piece of informa-

tion about their assigned urn, and no information about the unassigned urn. With

this information in hand, the subject is incentivized to truthfully report their be-

liefs about the rule (distribution) that their assigned urn follows, and also the rule

(distribution) that the unassigned urn follows.7

In the second phase, each subject observes another (randomly chosen) subject’s

elicited beliefs about the other subject’s assigned urn. This second subject’s urn

could be the same or differ from the original subject’s urn, but this information

is not revealed to the subject. With this piece of human-derived information, the

subject is again incentivized to report their true beliefs about both urns. After

these two phases with no feedback, the subjects begin the next round and repeat

the procedure. After ten rounds, a short survey is conducted and a round is selected

for payment.8

7Note, since the subject hasn’t received any information about the unassigned urn, there should
be no updating in the priors of the unassigned urn. This is one of several placebo tests we used
to ensure subjects understand the instructions and have some basic understanding of statistics.
Indeed, the vast majority of subjects report close to the prior belief of the unassigned urn at this
point, as shown in the results section.

8Alternative experimental designs that were considered, but not implemented are listed in
Appendix C.
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2.1 Design Details

In the first phase, subjects are independently assigned to either urn A or urn B with

equal chance. Both urns contain one hundred digital balls, labeled from 1 to 100.

In each round, urn A and urn B are independently randomized to follow one of

two “rules” with equal chance. Subjects are not told which rule the urns follows,

but those assigned to the same urn experience the same rule.

While both urns have the same uniform distribution of balls, the rules of the

urn influence the information that the subject actually observes. In particular, for

each subject the computer draws (with replacement) two balls randomly from the

assigned urn. However, the subject will only be informed about one of these two

balls, depending on which rule their assigned urn follows.

If the urn is following the Maximum Rule, the computer will reveal the larger

ball (the one with the higher value label). If the urn is following the Minimum Rule,

the computer will reveal the smaller ball (the lower value label). As a reminder,

urn A and urn B are independently randomized to either follow the Maximum Rule

or the Minimum Rule with equal chance. After observing one ball, subjects are

incentivized to predict the probability that the Maximum Rule is applied to their

assigned urn. Similarly, they also are incentivized to predict the probability that

Maximum Rule is applied to the unassigned (irrelevant) urn.9 To be clear, the

unassigned urn beliefs are also elicited with incentives described below, but less

(and potentially no) information is received about this urn. And any information

truly sourced from that unassigned urn is irrelevant to the assigned urn, as the rule

9Because the Maximum and Minimum rules are mutually exclusive, eliciting a single probability
for each urn is sufficient. However, because the urns’ rules were independently randomized, subjects
must report a probability for each urn.

11



for each urn is independently randomized. Thus, the urn themselves are irrelevant to

each other, but information coming from an unknown urn would need to be weighted

properly under a Bayesian framework.

In the second phase, for each subject, the computer randomly chooses another

subject, and reveals the first phase prediction of the other-subject’s assigned urn.

However, even though the subject observe this prediction, they do not know if this

other-subject was assigned to the same (assigned) urn or the other (unassigned)

urn.10 After seeing the information from another subject, subjects again predict

the probability that the Maximum Rule is applied to each urn. This concludes the

round, followed by the next round until all 10 have been completed. Subjects are

not informed of the outcomes in between rounds.11

2.2 Belief Elicitation

Following Holt and Smith (2016), we use an incentive compatible two-stage menu

of lottery choices as the belief elicitation mechanism in the experiment. Essentially,

it is the Becker-DeGroot-Marschak (BDM) pricing procedure but separated into

two stages to make it easier for subjects to understand. Holt and Smith (2016)

compared three mechanisms of belief elicitation and found beliefs elicited from this

two-stage procedure to be more accurate and with lower average belief error in terms

of Bayesian prediction.

10As subjects are independently randomized between Urn A and Urn B, the prior belief before
seeing the prediction is that the second subject has a 50% probability to have been assigned to
either urn. Subjects were informed of this statistical independence.

11While this reduces the scope of learning, which may be an interesting topic, the path depen-
dence could complicate the analysis. The main benefit of completing 10 rounds was to increase
variation in the signals observed, and we leave it to future work to study whether asymmetric
updating could be reduced with experience.
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In the first stage, subjects choose from a list of 11 lottery choices, with each

row being a choice between a “random lottery” and an “event lottery”. The “event

lottery” is the same for all 11 rows and rewards a prize if and only if the urn in

question follows the “Maximum Rule”. The random lotteries vary by row and have

winning probabilities ascending from 0%, 10%, ..., to 100%.

The prize for winning an “event lottery” is identical to the prize for winning

a “random lottery”, allowing subjects to focus on the probabilities involved. In

particular, subjects compare the probability of each random lottery with their belief

that the event would occur. If they have a subjective belief that there is a 55% chance

the urn follows the maximum rule, then the subject would presumably12 prefer the

event lottery over a random lottery with a 20% chance of winning. Likewise, the

subject would prefer the random lottery with a 80% chance of winning over the event

lottery. This same logic applies for a 50% chance of winning and a 60% chance of

winning, respectively.

Based on the “switching point”, subjects decide a second digit of probability in

the second stage. Thus, the subject might record a switching point between 50% and

60%, then report the second digit of 5, implying a subjective belief of 55% for the

event (urn following maximum rule). This is conceptually identical to having 101

rows of lottery pairs (0%, 1%, 2%, etc) but saves screen space, decision fatigue, and

allows for more rounds in a given time period. Because of this two-stage elicitation

12One might be concerned about the potential for ambiguity aversion to distort these probabil-
ities. Though it’s worth noting that the event lottery is not truly ambiguous in this experiment,
though the difficulty in Bayesian calculations may make it appear so. Aside from the aforemen-
tioned research Holt and Smith (2016), we also find no such evidence of this – for example phase 1
probabilities are mostly centered around the Bayesian posterior. One can also use the ’direction’
that ambiguity aversion would provide, that is, to give additional preference to the objective prob-
abilities. Thus the switching point would tend to be shifted closer to 0% for all situations. There
is no evidence that this is the case.
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methodology however, there can only be allowed one “switching point”. This re-

moves the potential for non-monotonic behavior, though this constraint is arguably

preferable for analysts and may explain why this two-stage elicitation seemed to do

better at eliciting Bayesian posteriors in Holt and Smith (2016).

After all 10 rounds are finished, one belief elicitation from a single round is

selected for payment. After the decision is done, the computer randomly draws one

number from 0 to 100. If the number is smaller than the two-stage implied switching

point, they receive the event lottery – that is, they are paid a prize only if the urn

in that elicitation was indeed following the maximum rule. If the number is equal or

larger than the two-stage implied switching rule, then they receive a random lottery

where the probability of winning the prize is equal to the original drawn.

2.3 Experimental Procedures

All sessions were conducted at Taiwan Social Sciences Experimental Laboratory

(TASSEL), National Taiwan University (NTU). Six sessions were run during October

2019 and November 2019, for a total of 123 subjects. We recruited NTU student

subjects using the TASSEL website powered by ORSEE (Greiner, 2015). Each

session lasted approximately 100 minutes, and average earnings were 512 NT dollars

(approx. $17).13 The experiment was programmed with z-Tree (Fischbacher, 2007)

and conducted in Chinese. The experimental interfaces are shown in Figure 1A for

the first stage and Figure 1B for the second stage of elicitation processes.

13This amount is substantial, double what students would have earned working at Taipei’s
minimum wage over a 100 minute period.
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Figure 1: Two-stage Menu of Lottery Choices: (A) 1st Stage, and (B) 2nd stage.
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2.4 Bayesian Probability Predictions

For notation simplicity, we define urn A to be the assigned urn and urn B to be

the unassigned (irrelevant14) urn. We use θmax and θmin to denote the Maximum

Rule and Minimum Rule of the assigned urn; the other urn also has two mutually

exclusive states, Maximum Rule and Minimum Rule, indicated by ωmax and ωmin.

The information s1 denotes the observed ball (of the assigned urn) in the first phase,

s2 is elicited probability from another subject (of their assigned urn, which may or

may not be the subject’s assigned urn as well) observed in the second phase.

2.4.1 The Structure of Two States

To calculate the Bayesian probability, we consider the structure of two possible

states in advance. Consider the probability Pr(s1|θmax) of seeing s1 under Maximum

Rule in the assigned urn. For two randomly drawn balls S1
1 and S2

1 , there are two

mutually exclusive events: Either the first drawn ball S1
1 is the observed ball and

therefore the second drawn ball is smaller than the observed ball, or exactly the

opposite, that is, the second drawn ball S2
1 is the observed ball and the first drawn

ball is equal to or smaller than the observed ball. Therefore, the probabilities of

seeing a signal s1 conditional on the assigned urn following the maximum rule is:

Pr(s1|θmax) =
2s1 − 1

10000
(1)

14The unassigned urn itself is irrelevant to the assigned urn as the rules are independently
randomized. It is not entirely irrelevant to the subject (who is incentivized to report their beliefs),
though less or no information is received about the unassigned urn.
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The other probability is Pr(s1|θmin) = 1− Pr(s1|θmax) = (201− 2s1)/10000. There-

fore, the probability distribution of observing the ball s1 is linear under both the

Maximum Rule (increasing linearly from 0.01% when observing 1 to 1.99% when

observing 100) and Minimum Rule (decreasing linearly from 1.99% when observing

1 to 0.01% when observing 100).

2.4.2 Phase 1

In the first phase, the processed information is the observed ball, which is only

useful to infer the state of urn A. With the observed ball, the Bayesian probability

prediction for urn A is as follows.

Pr(θmax|s1) =
Pr(s1|θmax) Pr(θmax)

Pr(s1)
=

(2s1 − 1)/10000

1/100
· 1

2

=
s1

100
− 1

200
(2)

The Bayesian posterior for urn A shows that subjects should predict a probability

slightly below their observed signal (ball) s1 (in percentage terms). For example,

observing a signal s1 = 100 would imply that there is a 99.5% probability that the

assigned urn is following the maximum rule.15 However, in the experiment, fractional

percentages were not allowed in the elicitation, requiring subjects to report a whole

percentage term (i.e. 55% instead of 54.5%).16 Thus reporting s1 (in percentage

15This falls short of 100% because the urn draws two balls with replacement, so it’s possible,
though unlikely, for a minimum urn to draw the 100 ball twice and report the ’smaller’ of the two
balls, i.e. 100.

16This restriction was chosen for implementation feasibility and ease of explaining the instruc-
tions to subjects. Please see the section on Design Details for more details.

17



terms) would be a correct Bayesian posterior given the constraints.17

The intuition of this prediction is as follows. If the subject receive a signal of 75,

then one of three states occurred:

• the unobserved ball was strictly less than 75 (and thus the urn must follows

the Maximum Rule)

• the unobserved ball was strictly greater than 75 (and thus the urn must follows

the Minimum Rule)

• the unobserved ball was exactly 75 (drawn twice due to replacement)

As the balls themselves are uniformly distributed and the rules are ex ante equally

likely, the first state has a 74% chance while the second has a 25% chance. The

third possibility conditionally occurs 1% of the time, but is uninformative about the

urn’s rule, thus it adds 0.5% to both the probability of the Maximum Rule and the

Minimum Rule.

The phase 1 Bayesian posterior for unassigned urn B is straightforward since

there is not yet any information about that urn. As a result, Pr(ωmax|s1) should be

0.5.

2.4.3 Phase 2

In the second phase, we assume subjects see another ball s2, which is either from

assigned urn A or unassigned urn B with ex ante equal probability. Because the

actual source is unknown, subjects are asked inferences of both urns.

17Likewise, reporting s1-1 is equally correct given the constraints, though less common in the
data. For example, suppose the observed ball s1 is 30, the Bayesian probability is Pr(θmax|s1 =
30) = 30

100 −
1

200 = 29.5%. Thus reporting either s1 = 30 or s1 − 1 = 29 in percentage terms would
be correct.
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However, in the experiment they actually observe a signal from another human

being. If the other subject is a correct Bayesian updater and the subject believes

that the other subject is a correct Bayesian updater, this is theoretically equivalent.18

For the most part, we see that the average subject is close to a Bayesian updater

in phase 1. However, whether subjects believe other subjects are Bayesian updaters

or not is ex ante unclear. In the next subsection and later analysis, we explore the

possibility that subjects view other subjects as sending non-informative (“random”)

signals.

With mathematical work found in an appendix, the Bayesian probability predic-

tion for urn A (the assigned urn) following the Maximum rule is:

Pr(θmax|s1, s2)

=
[3(2s2 − 1) + (201− 2s2)] (2s1 − 1)

[3(2s2 − 1) + (201− 2s2)] (2s1 − 1) + [(2s2 − 1) + 3(201− 2s2)] (201− 2s1)

(3)

The Bayesian probability prediction for urn B (the irrelevant urn) following the

Maximum rule is as follows.

Pr(ωmax|s1, s2)

=
(2s2 − 1)(2s1 − 1) + 100 · (201− 2s1)

(2s2 − 1)(2s1 − 1) + 100 · (201− 2s1) + 100 · (2s1 − 1) + (201− 2s2)(201− 2s1)

(4)

18It may be worth noting that subjects have pecuniary incentives not to misreport phase 1
beliefs, and no pecuniary incentive to misreport. As interaction between subjects was limited and
subjects were randomized between rounds without identification, we don’t believe nonpecuniary
concerns such as reputation or spite play a role here.
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Although these probabilities may seem difficult at first glance, many situations

outside of the laboratory are likely to have even more difficulty to properly Bayesian

update. In that sense, if subjects are unable to Bayesian update in this setting where

at least the priors are objective and known, they may be even less likely to Bayesian

update in more ambiguous setting. Thus, we tentatively view this as a lower bound

setting for Bayesian updating. In any case, the equations seem roughly equally

complex for confirming and conflicting information, which is our primary research

question.

2.5 Allowing for Social Information to be Non-informative

In the equations above, it is assumed that subjects believe the other subject to

be a perfect Bayesian updater. However, even though a vast majority of subjects

themselves report the observed signal (i.e. the correct Bayesian update), subjects

have no direct knowledge whether others would do the same. This question of

whether there is “common knowledge” of Bayesian updating is an important element

of social information, which to our knowledge, has not been directly studied in

previous experimental work, especially regarding asymmetric updating. To allow for

this extension in the above framework, we take the extreme assumption that subjects

perceive other subjects as sending ”non-informative” random signals.19 To model

this, we extend the model to include a third (psychic) ”urn” called the ”useless”

urn, as it has no information at all about either of the other urns.

In the previous subsection, we assume the prior probability that s2 came from

19It may bear repeating that truly non-informative signals may influence beliefs, as in Fryer Jr
et al. (2019). This extension does not allow for this possibility, as we cannot distinguish between
viewing a non-informative signal as informative vs viewing an informative signal as informative.
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the assigned urn was pA = 0.5 and the prior probability that s2 came from the

unassigned (irrelevant) urn was pI = 0.5. Now, we allow for more flexibility with

an additional pU term, to represent the prior belief that the other subject will be

so inaccurate at Bayesian updating that their signal should be discarded. However,

we still employ the constraint that pA + pI + pU = 1, and thus can substitute

pU = 1− pA − pI to remove the term from the Bayesian posteriors below:

Pr(θmax|s1, s2)

=
[(2s2 − 1)pA + 100(1− pA)](2s1 − 1)

[(2s2 − 1)pA + 100(1− pA)](2s1 − 1) + [(201− 2s2)pA + 100(1− pA)](201− 2s1)

(5)

Pr(ωmax|s1, s2)

=
[(2s2 − 1)pI + 100(1− pI)](2s1 − 1)

[(2s2 − 1)pI + 100(1− pI)](2s1 − 1) + [(201− 2s2)pI + 100(1− pI)](201− 2s1)

(6)

In later analysis below, we estimate these parameters pA and pI from the data.
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3 Results

3.1 Adherence to Bayesian Updating

3.1.1 Compliance After Initial Draw

Figure 2A presents elicited probabilities of the assigned urn after drawing a ball in

the first phase. Each data point represents the reported belief and the initial drawn

number of a subject in a particular round. In addition, the kernel density estimation

shows that highest density regions are pretty close to the correct Bayesian posteriors.

In fact, with nearly 90 percent of the data aligned with the theory if we allow for

an errors margin of plus and minus 10 percentage points (±10%).20 The elicited

probabilities of the irrelevant urn, in which they do not have any information, are

shown on Figure 2B, in which over 80% of the elicited probabilities are between 0.4

and 0.6 (50% ± 10%). Besides, the kernel density estimation extremely adheres to

the correct Bayesian posteriors. Table 1 shows that a majority of choices conform

with the theoretical predictions as we reduce the margin of error allowed. Even

under the strictest case allowing for only 1 percentage point error (±1%), 60% and

55% of the choices are considered Bayesian in the assigned and the irrelevant urn,

respectively.

Notice that there is a cluster of elicited probabilities along the 45-degree line

in Figure 2B, implying that some subjects also use the initial draw to update the

irrelevant urn. We find that those choices come from one-time behavior of different

20Alternatively, one could construct the upper and lower bounds relative to the initial draw. For
example, allowing for a 10 percent error results in 50%± 5% for the ball 50, but 10%± 1% for the
ball 10. This criteria is harsh to those who draw a very small or large ball since they have stronger
information. However, under it 76% of the data are still considered to be aligned with theory.
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subjects and not concentrated in particular rounds, indicating that they are not

caused by particular subjects or rounds.21 Although these choices consist of 3% to

10% of the data (depending on definition employed), they inflate the correlation be-

tween the elicited probabilities of the assigned and irrelevant urn.22 Without these

choices, the correlation is 0.003 (p > 0.1), indicating that the vast majority of proba-

bilities are elicited with the knowledge that states of the two urns are independent.23

In conclusion, most of the choices are consistent with Bayesian updating derived in

section 2.4.2.24

Figure 2: Elicited Beliefs in the First Phase of the (A) Assigned (B) Irrelevant Urn

21See Appendix A for further details. In most of these cases, both the assigned and the irrelevant
urn will have elicited beliefs very close to each other, suggesting it was not just a matter of mistaking
which urn was assigned to them.

22A total of 37 choices lie exactly on the 45-degree line excluding initial draws between 40 and
60 where we cannot easily tell if they updated beliefs of the irrelevant urn or not.

23Similarly, the second phase correlation between the two urns is 0.006 (p > 0.1). Computing
with all data, the first and second phase correlations are 0.067 and 0.029, respectively.

24A series of additional robustness checks was conducted where these observations were dropped.
Results were consistent across including or dropping the data, so we have not reported them below
but are happy to provide the raw data or robustness checks upon request. Please see A for some
additional detials.
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Table 1: Percentage of Theory-consistent Choices Under Different Error Margins

Error Margin Assigned Urn Irrelevant Urn

±10 percentage points 89% 81%
±5 percentage points 81% 74%
±3 percentage points 75% 60%
±1 percentage points 66% 55%

3.1.2 Failure After Observing New Information

There exists one intuitive difference between the two possible states of the urn: When

the true state is the Maximum Rule, the subject is more likely to observe a ball larger

than 50, while under the Minimum Rule, the subject is more likely to observe a ball

equal to or smaller than 50. This leads to a straightforward heuristic for subjects

to determine whether new information in the second phase is more likely to come

from an urn under the Maximum Rule or Minimum Rule. As a result, we classify

the second-phase information coming from another subject, as either confirming or

conflicting information. In particular, the new information is confirming if first and

second phase information are both within 1–50 or both within 51–100, while it is

conflicting when one is within 1–50 and the other one is within 51-100.25

Compared to the first phase, belief-updating in the second phase is much worse.26

Figure 3 summarizes the distribution of Bayesian posteriors and the average devia-

tion from them on different intervals. When the new information is confirming, we

find that subjects deviate less in the assigned urn, but deviate more in the irrelevant

urn. This suggests that it is easier to correctly process new information regarding

25Some information may be too close to 50 to be “confirming” or “conflicting” enough, such
as initial draws or new information between 40 and 60. Excluding these cases, we expect to find
stronger effects.

26See Figure 10 of Appendix B for the raw data plotted like Figure 2.
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the assigned urn that aligns with what subjects already have. In contrast, updating

behavior for the irrelevant urn is far from the Bayesian prediction as the overall

deviations are larger than the assigned urn (Figure 3B).

Figure 3: Elicited Beliefs Distribution in the Second Phase of (A) the Assigned, and
(B) Irrelevant Urn

Furthermore, the R-squared predicting elicited probabilities using Bayesian pos-

teriors shows that subjects perform updating well in the assigned urn when the

information is confirming (R2 = 0.82), but perform worse when it is conflicting

(R2 = 0.51). In contrast, for the irrelevant urn, subjects perform worse when the

new information is confirming (R2 = 0.33), but perform better when it is conflicting

(R2 = 0.52). The differences in R2 are statistically significant for both urns (vari-

ance ratio test, p < 0.001). The results in Appendix B show that the slopes between

confirming and conflicting information are not significantly different in Figure 10A

(p = 0.175) and Figure 10B (p = 0.434).27

27We test the coefficient β3 from the model: Beliefsβ0 + β1Bayesian + β2Confirming +
β3Interaction + ε, where the dummy variable Confirming indicates the new information is con-
firming (=1) or not (=0), Interaction is the interaction term of Bayesian and Confirming.
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3.2 Belief Updating

In principle, subjects should update their beliefs of both urns regardless of the

information received in the second phase because there is always a chance the new

information could be from either urn. However, the irrelevant urn has the natural

advantage that one should only update it according to the new information regarding

the ball of the second phase, since the first ball only carries information about the

assigned urn. Therefore, we can easily infer how subjects attribute new information

to each urn in the second phase from their updating behavior.

Figure 4 plots elicited probabilities against second-phase information.28 The

red dots are elicited beliefs around 0.5, adhering to the Bayesian prediction of the

first phase, indicating “fully dissociate” subjects who do not update irrelevant urn

beliefs at all (and should completely attribute the new information to the assigned

urn). On the other hand, the blue crosses along the 45-degree line indicate “fully

attribute” types who completely ignore the fact that there is some probability that

the new information is from their assigned urn.29 These two types are strongly

biased since they put extreme weight on the new information when updating the

irrelevant urn. However, they account for 76.7% of the choices when we allow 5

percentage points of error. The intermediate types with more reasonable weights

are shown as green triangles in Figure 4, but consist only 18.7% of the choices.

This includes those who follow Bayesian updating. Lastly, the remaining 4.6% of

choices in black are difficult to rationalize, and might reflect confusion or some other

28We drop the choices if their first phase beliefs of the irrelevant urn are out of the range,
[0.45, 0.55]. The remaining choices plotted in the Figure 4 contain 74% of the data.

29The purple dot-cross symbols are overlapping area of the two types, in which we cannot
distinguish their types.
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information processing method. We summarize the updating behavior in the Table

2.

Figure 4: Types of Behavior (Irrelevant Urn)

Table 2: Types of Behavior (Irrelevant Urn)

Types of Choices Definition Percentage

Either Either fully dissociate or fully attribute type. 16.3 %
Fully Dissociate Other subject’s information comes from the assigned urn. 25.4 %
Fully Attribute Other subject’s information comes from the irrelevant urn. 35 %
Intermediate Put reasonable weights on other subject’s information 18.7 %
Others Choices cannot be classified into above four types. 4.6 %

In Figure 3, we separate second-phase information into confirming and conflict-

ing information as defined in section 3.1.2. To compare the difference in behavior

between receiving confirming and conflicting information, we use a dummy indi-

cating confirming information to predict the occurrence of two distinct types of

behavior, completely attribute the information to the assigned urn (Fully Disso-
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ciate) and the irrelevant urn (Fully Attribute). Table 3 report fixed-effect panel

regression results clustered at the subject level, predicting whether the inferred

prior belief fully attributes the new information to the irrelevant urn using whether

information is confirming or not. For confirming information, 33.7% of the choices

completely attribute the new information to the assigned urn, while 31.1% of the

choices completely attribute the new information to the irrelevant urn. However,

when subjects receive conflicting information, only 16.5% of the choices attribute

new information to the assigned urn, significantly lower than that under confirming

information. Moreover, 39% of the choices completely attribute new information to

the irrelevant urn, significantly higher than that under confirming information. This

results demonstrates a confirmation bias where subjects overweight (underweight)

the possibility that new information came from the assigned urn when it confirms

(refutes) their prior.

Figure 5: Elicited Beliefs of the Irrelevant Urn: (A) Confirming, and (B) Conflicting
Information.

Among those who completely attribute the new information to the irrelevant urn
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Table 3: Attribution of the Information

(1) (2)
Fully Attribute to Assigned Urn Irrelevant Urn

Confirming Information 0.165∗∗∗ -0.079∗∗∗

(0.022) (0.025)

Constant 0.172∗∗∗ 0.390∗∗∗

(0.017) (0.019)

N 914 914

Note: Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

(Fully Attribute), their updated beliefs of the assigned urn should remain unchanged

because they believe the information is coming solely from the irrelevant urn. Indeed,

the posteriors of the assigned urn show that 75% do not update the assigned urn

beliefs much.30 The remaining 25% also changes their beliefs regarding the assigned

urn, overreacting the new information.

In contrast, among those who completely attribute the new information to the

assigned urn (Fully Dissociate), beliefs of the assigned urn should be updated as if

they have two balls from that urn, resulting in a Bayesian updating process similar to

equation (3) in section 2.3.2.31 Unexpectedly, 54% of these choices stick to their first-

phase posteriors of the assigned urn. This implies at least 25.4%× 54% = 13.7% of

all choices completely ignore the new information and update neither urn.32 Figure

6 plots the remaining choices after excluding those which completely ignore the

new information. Figure 6A compares the elicited probabilities of fully dissociate

types and the Bayesian posterior assuming that both balls came from the same urn.

30This number is calculated by allowing 5% error. In fact, 63% have the exact same first and
second posterior beliefs.

31The Bayesian prediction of having two balls from the same urn is: Pr(θmax|s1, s2) =
Pr(s2|θmax) · Pr(θmax|s1)/ [Pr(s2|θmax) · Pr(θmax|s1) + Pr(s2|θmin) · Pr(θmin|s1))].

3213.7% is the lower bound since 25.4% excludes choices when second phase information are
close to 50 that could be either Fully Dissociate or Fully Attribute.
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Even though subjects fully dissociate the information from the irrelevant urn, the

updating behavior systematically under-weights the new information from the other

subject, resulting in a slope of 0.67 that is significantly lower than 1 (p < 0.001).

In fact, the elicited probabilities are closer to the Bayesian probability prediction

derived in section 2.3.2 (Figure 6B), although the slope (0.78) is still lower than 1

(p < 0.001).

Figure 6: Fully Dissociate: (A) Two Balls from Assigned Urn. (B) Correct Bayesian.
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3.3 Inferred Prior Beliefs of Other’s Information

In this section, we estimate the source beliefs (pA, pI), probabilities subjects consider

the information comes from, which reflects how subjects attribute the information

to the assigned and irrelevant urn. In our experiment, it is explicitly stated that

the combination of source beliefs is (0.5, 0.5). We use the four posteriors elicited

(first/second phase in the assigned/irrelevant urn) to estimate subjects’ (pA, pI) by

conducting a maximum likelihood estimation.33 We follow a structural estimation

method similar to that in Costa-Gomes and Crawford (2006) but impose a logit

error structure instead of spike-logit because it is hard for subjects to exactly hit

the Bayesian updating prediction given the complicated Bayesian calculation.

We allow for 21 possible types, ranging from pA = 0, 0.05..., to 1.34 We assume

that each subject’s updating behavior is fixed across the 10 rounds. Formally, let

k = 0, 5, ..., 100 (which stands for the source belief pA from 0%, 5%, ..., to 100%)

index our types, R = 20 denote the total number of elicited probabilities (since each

round consists of two updating decisions),35 and xir denote subject i’s posteriors in

choice r. Given subject’s type and information received, let ti,kr denote the predicted

posterior for a type-k subject i in round r. In order to interpret the pattern of

33To properly investigate individual “updating” types, we use subjects’ first posteriors to cal-
culate the target second posteriors, otherwise it could be problematic for those who deviate from
the Bayesian posteriors in the first phase. For example, subject who report 60% as posteriors of
the irrelevant urn and 38% as posteriors of the assigned urn in both phases is actually behaving
as an “ignoring” type in the second phase. However, if we use the correct Bayesian posteriors in
the first phase as benchmarks to calculate the second phase posteriors, we will mistakenly believe
this subject is perfectly Bayesian.

34It is unnecessary to divide the types further since different pA would map into the same
combination of balls. For example, suppose one subject has the balls 30 and 70 in the first and
second phase, respectively. The Bayesian posteriors are 0.38 for the assigned urn and 0.61 for the
irrelevant urn if pA = 0.5. If pA = 0.51, the corresponding posteriors hardly change, so we cannot
distinguish the subject’s type.

35We assume that all posteriors are updated independently.
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deviations from one’s updating, we specify a logit error structure in which, in every

particular round, a subject updates to the exact predicted posterior of one’s type

with highest probability, and the probability decreases as we move away from the

predicted posterior. In particular, a type-k subject’s assigned urn posterior in round

r satisfies the logit density function dkr(x
i
r, t

i,k
r , λ) with precision parameter λ:

dkr(x
i
r, t

i,k
r , λ) ≡ exp [λE(xir|ti,kr )]∑

zir
exp [λE(zir|t

i,k
r )]

. (7)

where the expected payoff E(x|ti,kr ) = x · ti,kr + (1− x) · (x+ 1)/2, the actual payoff

subjects earn in the experiment. Therefore, the density of a type-k subject with

updates xi ≡ (xi1, ..., x
i
R) is

dk(xi, ti,k, λ) ≡
∏
r

dkr(x
i
r, t

i,k
r , λ). (8)

Let pk denote a subject’s prior probability of being type-k, with
∑K

k=1 p
k = 1 and

p ≡ (p1, ..., pK). By multiplying the right hand-side of (7) by pk, summing over k

and taking logarithms, the log-likelihood function for subject i becomes

ln L(p, ε, s|xi) = ln

[
K∑
k=1

pkdk(xi, ti,k, λ)

]
. (9)

Given the estimate of λ, it is clear from (9) that the maximum likelihood estimate

of p sets pk = 1 for the generically unique k that yields the highest dk(xi, ti,k, λ).

The maximum likelihood estimate of λ is the logistic scale parameter describing the

spreading of subject’s updating.
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Figure 7A shows that on average subjects assign different weights when facing

conflicting and confirming information. The weight is pA = 32% (median = 20%)

when estimated using only rounds in which the information is conflicting, but it

increases to pA = 44% (median = 45%) when using rounds in which information in

confirming. The difference of subject beliefs between confirming and conflicting is

significant (44% � 32%: t-test p < 0.001; Wilcoxon signed-rank test p = 0.003),

suggesting the occurrence of an echo chamber effect.

Figure 7: Models of Information Sources: (A) Two Urns (B) Three Urns.

The above model restricts the sum of pA and pI to necessarily equal to one,

which implies the information must originate from either the assigned or irrelevant

urn. This assumption adheres to our experimental design. However, people may

underweight others’ information. Also, notice that subjects do not always update

correctly compared to Figure 2A. Therefore, subjects may believe that the infor-

mation received does not coincide with a ball drawn from one of the two urns. As

a result, they might decide to discount or even ignore this information completely
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when updating their beliefs in the second phase.

We can modify our model to accommodate the possibility of under-weighting

information. Subjects may view the information as useless for making any inference,

and thus ignore and attribute it to a “useless urn” added to our model to deal

with such situations. If the information comes from the useless urn, each ball is

drawn with equal probability. In other words, this information is completely random

and not helpful to update any posteriors at all. The theoretical predictions of

Pr(s2|s1, θmax) derived in equation (14) becomes36

Pr(s2|s1, θmax)

= Pr(s2|s1, θmax, ωmax) · Pr(ωmax|s1, θmax) + Pr(s2|s1, θmax, ωmin) · Pr(ωmin|s1, θmax)

=
1

2

[
Pr(s2|s1, θmax, ωmax,Assigned s2) · pA + Pr(s2|s1, θmax, ωmax, Irrelevant s2) · pI

+ Pr(s2|s1, θmax, ωmax,Useless s2) · pU + Pr(s2|s1, θmax, ωmin,Assigned s2) · pA

+ Pr(s2|s1, θmax, ωmin, Irrelevant s2) · pI + Pr(s2|s1, θmax, ωmin,Useless s2) · pU
]
.

(10)

Figure 7B shows that subjects are still significantly prone to attributing infor-

mation to the irrelevant urn when it is conflicting (59% � 45%: t-test: p = 0.001;

Wilcoxon signed-rank test: p = 0.002). However, this effect disappears for the as-

signed urn—subject beliefs of the information source are not significantly different

between conflicting and confirming information (25% ∼ 21%: t-test and Wilcoxon

signed-rank test: p > 0.1). Instead, the effect is entirely on the useless urn, showing

36Equation 10 demonstrates how to break down the probability Pr(s2|s1, θmax) to three urns.
We can also apply the same method to the remaining three required probabilities, Pr(s2|s1, θmin),
Pr(s2|s1, ωmax), and Pr(s2|s1, ωmin).
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Figure 8: Information Sources Distributions: (A) Two Urns (B) Three Urns.

that subjects tend to ignore the information when it is confirming (33% � 16%:

t-test: p < 0.001; Wilcoxon signed-rank test: p < 0.001). The distributions of sub-

jects in the two models are shown in Figure 8, and individual beliefs of the source

are listed in Table 6.

To illustrate the differential processing of confirming and conflicting information,

we consider three representative types: Subjects who attribute the information com-

pletely to the assigned urn (pA = 1), completely to the irrelevant urn (pA = 0), and

those close to Bayesian (pA = 0.5). Applying the same maximum likelihood estima-

tion with these 3 types (pA = 0, 0.5, 1) instead of 21 types (pA = 0, 0.05, · · · , 1), we

estimate individual types and classify subjects accordingly. The results shown in Ta-

ble 4 indicate that 24.4% more subjects attribute the information completely to the

assigned urn when it is confirming. In contrast, 10.6% more subjects attribute the

information completely to the irrelevant urn when it is conflicting. Table 4 uncov-

ers this alternation at the individual level. Subjects along the diagonal (49.6%) are

consistent under both information. Importantly, the upper triangle subjects (37.4%,

underlined) put more weight on the assigned urn when moving to confirming infor-
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mation (from conflicting information). In other words, these subjects exhibit an

“echo chamber effect,” since they are more likely to believe that confirming infor-

mation comes from their assigned urn and vise versa.

Table 4: Individual Type Transition: Conflicting vs. Confirming (%)

Confirming pA
Conflicting pA 0 0.5 1 Total

0 21.1 21.1 12.2 54.4
0.5 6.5 25.2 4.1 35.8
1 1.6 4.9 3.3 9.8

Total 29.3 51.2 19.5 100.0

It is apparent that subjects are not necessary consistent between belief-updating

of the assigned urn and the irrelevant urn. This may be caused by the inability

to properly assign probabilities between the two urns. In particular, subjects could

update the two urns independently, instead of comprehensively evaluate the infor-

mation and simultaneously update their beliefs about the assigned and irrelevant

urn. Hence, they utilize the information and assess the probability for it to come

from each urn separately. If they deem the information irrelevant, it is attributed

to a useless urn, in which each ball (1 to 100) is drawn with equal chance, instead

of the other urn. Therefore, subjects assign underlying beliefs (pA, pU) and (pI , pU)

when assessing the assigned and irrelevant urn, respectively.

We compare underlying beliefs pA and pI when receiving confirming and con-

flicting information. Specifically, we predict underlying beliefs with a constant and

the dummy for Confirming information to predict pA in each round, and cluster

standard errors at the subject level to control for repeated observations. We ex-

clude choices which could only be rationalized with impossible beliefs that are not

in the interval [0, 1], which happens more often for the irrelevant urn. This leaves us
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with 846 observations for the assigned urn, in contrast to 775 observations for the

irrelevant urn. Table 5 column (1) and (2) show that the directions of coefficients

confirm the asymmetric updating. When the new information is aligned with their

prior information, subjects put insignificantly more weight (2.4%) on the assigned

urn, but significantly less (-18.7%, p < 0.001) weight on the irrelevant urn. How-

ever, notice that some information are more confirming or conflicting than others.

For instance, when information is 51, one can hardly infers anything. Similarly,

the information may not really be confirming or conflicting for subjects where the

initial draws are close to 50. Thus, we regard information as strongly confirming

or conflicting when neither the initial draw nor the new information are between 40

and 60. The results shown in column (3) and (4) indicated that the effects are even

larger at 5.6% (p < 0.05) and -27.3% (p < 0.001) for the assigned and irrelevant

urn, respectively.

Table 5: Independent Source Beliefs

Source Beliefs:
(1)

Assigned Urn
(2)

Irrelevant Urn
(3)

Assigned Urn
(4)

Irrelevant Urn

Confirming Information
0.024

(0.020)
-0.187***
(0.031)

0.056*
(0.025)

-0.273***
(0.037)

Constant
0.155***
(0.019)

0.533***
(0.028)

0.142***
(0.022)

0.611***
(0.033)

Stronger Confirming/Conflicting 7 7 3 3

N 846 775 555 518
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Table 6: Individual Source Beliefs

Two Urns Three Urns Two Urns Three Urns
Conflicting Confirming Conflicting Confirming Conflicting Confirming Conflicting Confirming

ID pA pA pA pI pA pI ID pA pA pA pI pA pI
416 0 0 0 0.25 0 1 621 0.25 0.2 0.25 0.75 0.2 0.8
111 0 0 0 1 0 1 620 0.25 0.45 0.05 0.8 0.1 0.4
115 0 0 0 1 0 1 512 0.25 0.5 0.05 0.55 0.05 0.2
508 0 0 0 1 0 1 307 0.25 0.5 0.15 0.6 0.45 0.45
519 0 0 0 1 0 1 417 0.25 0.65 0.25 0.75 0.1 0.25
604 0 0 0 1 0 1 404 0.3 0 0.3 0.6 0 1
616 0 0 0 1 0 1 109 0.3 0.45 0.3 0.7 0 0.25
212 0 0.05 0 1 0.05 0.65 503 0.35 0.35 0 0.8 0 0.25
504 0 0.05 0 1 0.05 0.95 221 0.35 0.5 0.35 0.65 0.25 0.45
511 0 0.05 0 1 0.05 0.95 407 0.35 0.55 0 0 0 0.05
217 0 0.1 0 0.95 0.05 0.85 502 0.35 0.6 0 0.4 0 0.25
301 0 0.1 0 1 0 0.85 613 0.35 0.9 0.4 0.55 0.5 0.05
313 0 0.1 0 1 0.1 0.9 316 0.4 0.4 0.4 0.6 0.4 0.6
607 0 0.2 0 0.95 0 0.55 213 0.4 0.55 0.3 0.6 0.45 0.35
210 0 0.2 0 0.95 0.1 0.8 509 0.45 0.1 0.3 0.55 0 0.65
619 0 0.2 0 1 0.2 0.75 601 0.45 0.4 0.4 0.45 0.3 0.55
218 0 0.2 0 1 0.2 0.8 317 0.45 0.45 0.45 0.55 0.2 0.45
412 0 0.35 0 0.95 0.35 0.65 617 0.45 0.5 0.45 0.55 0.4 0.35
108 0 0.35 0 1 0.05 0.15 610 0.45 0.65 0.45 0.55 0.65 0.35
614 0 0.35 0 1 0.1 0.45 517 0.45 0.75 0.45 0.55 0 0.1
611 0 0.35 0 1 0.2 0.65 117 0.5 0.55 0.5 0.5 0.3 0.25
310 0 0.4 0 0.9 0.35 0.6 214 0.55 0.5 0.5 0.45 0.1 0.2
516 0 0.4 0 1 0.15 0.45 211 0.55 0.7 0.1 0 0.05 0
320 0 0.45 0 0.45 0.1 0.4 622 0.6 0 0 0 0 1
202 0 0.45 0 1 0.3 0.5 311 0.6 0.3 0.6 0.4 0.3 0.7
314 0 0.65 0 0.85 0.35 0.2 312 0.6 0.35 0.6 0.4 0.35 0.65
103 0 0.65 0 0.95 0.6 0.25 521 0.6 0.4 0.6 0.4 0.2 0.55
414 0 0.65 0 1 0.05 0.25 319 0.6 0.45 0.6 0.4 0.45 0.55
102 0 0.7 0 1 0.65 0.2 507 0.6 0.45 0.6 0.4 0.45 0.55
624 0 0.75 0 0.5 0 0 513 0.6 0.45 0.6 0.4 0.45 0.55
306 0 0.8 0 1 0.3 0.1 625 0.6 0.55 0.05 0 0 0.2
501 0 0.85 0 1 0.5 0 603 0.6 0.55 0.35 0 0 0
208 0 1 0 1 0.4 0 118 0.65 0 0.65 0.35 0 1
203 0 1 0 1 0.5 0 114 0.65 0.35 0.55 0.25 0 0.4
216 0 1 0 1 1 0 406 0.65 0.45 0.4 0 0 0.1
205 0.05 0 0.05 0.95 0 0.8 201 0.65 0.45 0.5 0.25 0 0.35
318 0.05 0 0.05 0.95 0 1 411 0.65 0.5 0.55 0.3 0.15 0.35
615 0.05 0.25 0.05 0.95 0.05 0.65 104 0.65 0.65 0.65 0.35 0.4 0.35
321 0.05 0.3 0.05 0.95 0 0.5 403 0.65 1 0 0 0.8 0
116 0.05 0.5 0.05 0 0.3 0.5 520 0.7 0 0.2 0 0 1
606 0.05 0.5 0.05 0.95 0.5 0.5 608 0.7 0 0.7 0.3 0 1
515 0.05 0.55 0 0.95 0.1 0.35 612 0.7 0.4 0.7 0 0.4 0.6
609 0.05 0.65 0 0.95 0.2 0.15 605 0.7 0.45 0.55 0.15 0.05 0.25
206 0.05 0.7 0 0.8 0 0 408 0.7 0.85 0.7 0.25 0 0
209 0.05 0.8 0.05 0.95 0 0 113 0.7 0.95 0.6 0.1 0 0
305 0.05 0.85 0.05 0.95 0.05 0.05 207 0.75 0.65 0.6 0 0.05 0.05
409 0.05 0.9 0 0.95 0.25 0 309 0.75 0.9 0.55 0 0.75 0.05
413 0.05 1 0.05 0.95 1 0 410 0.8 0.05 0.65 0.1 0 0.95
505 0.1 0 0 0 0 0.9 303 0.8 0.25 0.8 0.2 0.25 0.75
402 0.1 0.05 0 0.75 0.05 0.95 215 0.8 0.55 0.75 0.2 0.45 0.3
623 0.1 0.25 0.05 0.8 0.25 0.75 405 0.8 0.75 0.2 0.1 0 0
415 0.1 0.85 0.05 0.85 0.4 0 602 0.85 0 0.85 0.15 0 0.85
304 0.15 0 0.05 0.75 0 0.95 302 0.85 0.3 0.85 0.15 0.3 0.7
219 0.15 0 0.15 0.85 0 0.85 220 0.9 0.2 0.9 0.1 0.2 0.8
105 0.15 0.8 0.15 0.85 0.55 0.15 107 0.95 0.25 0.95 0.05 0.05 0.55
518 0.15 0.95 0.05 0.7 0.65 0 618 1 0.35 0.7 0 0.35 0.6
315 0.15 1 0.15 0.85 0.15 0 106 1 0.5 1 0 0.4 0.5
308 0.2 0.05 0.2 0.8 0.05 0.95 112 1 0.55 1 0 0.35 0.35
110 0.2 0.4 0.2 0.65 0 0.3 401 1 0.8 1 0 0.8 0.2
204 0.2 0.4 0.2 0.8 0.1 0.5 510 1 1 0 0 1 0
101 0.2 0.7 0 0.45 0.25 0.1 506 1 1 1 0 1 0
514 0.2 0.8 0.2 0.8 0.3 0
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3.4 Log Odds Ratio Analysis

Although we believe the above frameworks are best suited to answering our research

question regarding the beliefs of information sources, in this subsection we also

employ an alternative structure for analysis in line with existing literature. This is

to enable closer comparisons to previous findings and serves as a “robustness” check

of sorts for some of our findings. This analytical model can be briefly summarized

as separately identifying weights of different components contained in the log-odds

ratio version of the Bayes Rule and was first described in Möbius et al. (2014).37

However, to our knowledge, previous papers using this model only had one source

of information, i.e. one urn, and a binary signal structure (though potentially mul-

tiple binary signals). Thus, we extend the framework to allow for our two urn and

1,2,...,100 signal design.

A second (known) issue with applying this framework is that, as subjects may

have persistent and incorrect biases, it’s possible the error term in a new Bayesian

update is correlated with the most recent posterior (the ’prior’ for that round).

A standard approach has been to use the past signals and randomized priors to

instrument for the most recent posterior (Möbius et al. (2014); Barron (2021).)

As an additional partial solution, we do subsample analysis on observations who

have correctly identified which ”side” of 50 their posterior should land, given their

initial signal. This corresponds to 95% of all observations. In addition, this endo-

geneity issue should not be a concern for the first round update of the assigned urn,

or the second round update of the unassigned urn, where subjects have not received

37Barron (2021) also provides a concise summary of this model, parameter interpretation, and
related literature.
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any information.

Despite these issues above, this extension does not alter the core interpretation

of the parameters meaningfully, allowing for comparison to previous literature.

3.4.1 First Stage Results

In the first round, where the subject receives a signal from their assigned urn, we

can rewrite the log-odds ratio as:

log

(
P (θmax|s1)
P (θmin|s1)

)
= log

(
P (θmax)

P (θmin)

)
+ log

(
P (s1|θmax)
P (s1|θmin)

)

Assuming the subject understood the informed prior beliefs P (θmax) = P (θmin) =

0.5, the first term on the left is log(1) = 0. Thus, we can further simplify to

log

(
P (θmax|s1)

1− P (θmax|s1)

)
= log

(
2s1 − 1

201− 2s1

)

Thus a test of Bayesian updating following the first signal would be akin to running

a linear regression model:

log

(
P (θmax|s1)

1− P (θmax|s1)

)
= α + β · log

(
2s1 − 1

201− 2s1

)
+ ε1

One benefit of the Möbius et al. (2014) framework is the ease of interpreting the

coefficients – in particular, if β̂ were estimated to be 2, that means that one piece of

information for the experimental subject would be equivalent to 2 (independently
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Table 7: First Stage Beliefs: Log-Odds Ratio Framework

Dependent Variable: Assigned Urn Unassigned Urn
Log of Odds Ratio Belief (1) (2) (3) (4)

Log Odds of Signal 0.918∗∗∗ 0.914∗∗∗ 0.019 0.019
(0.02) (0.02) (0.03) (0.03)

Constant 0.112∗∗∗ 0.006
(0.02) (0.03)

Number of Observations 1216 1216 1216 1216
Number of Individuals 123 123 123 123
Adj-R2 0.86 0.86 0.002 0.002

Notes: The dependent variable is the log odds ratio of the belief that the assigned urn (specifications 1 and 2) or

unassigned urn (specifications 3 and 4) is following the maximum rule after observing the first signal. The independent

variable is the log odds of the signal log
(

2s1−1
201−2s1

)
. All specifications report results from OLS and standard errors are

given in parentheses and clustered at the subject (individual) level. Stars reference whether coefficient is significantly

different from the expected coefficient of a perfect bayesian updater. ∗ = p < 0.1, ∗∗ = p < 0.05, ∗ ∗ ∗ = p < 0.01.

drawn) pieces of the same information for a correct Bayesian updater.38

In this first stage analysis (see Table 7), we estimate β̂ = 0.914 or β̂ = 0.918

whether one constrains α to 0 or not, respectively. In either case the standard

error (clustered at subject level) is 0.02, and thus β̂ is significantly different from 1

(p− value = 0.0001). This represents slightly conservative updating from the prior,

or in other words, an observed posterior belief too close to the prior of 50%.

Note that a perfect Bayesian updater would not alter their prediction of the

unassigned urn, having received no information about it. Still, we could test how

well this assumption fits our subjects by regressing:

log

(
P (ωmax|s1)

1− P (ωmax|s1)

)
= ζ + η · log

(
2s1 − 1

201− 2s1

)
+ ν1

38This was brought to our attention by Barron (2021), but can be demonstrated by the linear
nature of the log-odds ratio.
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In this case, both ζ̂ and η̂ are statistically indistinguishable from 0 at the 5% level

(clustering at the subject level). This is true regardless of whether we impose no

constraints, or constrain either one of them to be 0.

In summary, for the first stage with one piece of objective information, it appears

this framework shows a pattern of slight under-updating for the assigned urn and

correct Bayesian inference for the unassigned urn.

3.4.2 Second Stage Results

For the second stage, where the subject learns the social signal of another subject’s

first stage belief elicitation, we need to use conditional probabilities, but it takes a

familiar form:

log

(
P (θmax|s1, s2)
P (θmin|s1, s2)

)
= log

(
P (θmax|s1)
P (θmin|s1)

)
+ log

(
P (s2|θmax, s1)
P (s2|θmin, s1)

)

Note that the first term on the right is actually the log odd ratio elicited in the first

stage. The second term on the right can be expanded and simplified down to:

log

(
P (θmax|s1, s2)

1− P (θmax|s1, s2)

)
= log

(
P (θmax|s1)

1− P (θmax|s1)

)
+ log

(
3(2s2 − 1) + (201− 2s2)

(2s2 − 1) + 3(201− 2s2)

)

In Möbius et al. (2014) terminology, the left term would be logit(π2), the first term

on the right logit(π1) and the right term is essentially their log( q
1−q ), but in our case,

q is not a constant as s1 and s2 are not binary signals. But otherwise they represent

similar concepts (log odds ratio of posterior, prior, and signal respectively).
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Thus, one equation we could estimate in this framework would then be:

log

(
P (θmax|s1, s2)

1− P (θmax|s1, s2)

)
= δ · log

(
P (θmax|s1)

1− P (θmax|s1)

)
+

+ γconfirm · log
(

3(2s2 − 1) + (201− 2s2)

(2s2 − 1) + 3(201− 2s2)

)
· 1[confirm]

+ γconflict · log
(

3(2s2 − 1) + (201− 2s2)

(2s2 − 1) + 3(201− 2s2)

)
· 1[conflict] + ε2

Where 1[confirm] refers to a binary variable for whether the signal and 100·first

stage belief were on the same side of 50 (both above or both below 50), and

1[conflict] has the signal and 100·first stage belief on opposite sides of 50.39

However, as Möbius et al. (2014) and others have pointed out, there is a potential

endogeneity issue of using lagged dependent variables on the right hand side. In par-

ticular, the potential concern is E[
ˆ

log
(

P (θmax|s1)
1−P (θmax|s1)

)
ε2] 6= 0. This may be the result

of heterogeneous, but persistent, updating processes across individuals or consistent

measurement error in self-reported beliefs (despite the incentivized methodology).

Therefore, in line with previous literature, we employ the signal actually observed

as a instrument for the first stage belief of the assigned urn. One benefit of this

methodology in our setting is that we have a very strong first stage result due to the

relatively high information of our signal compared to a binary signal. This should

reduce the inherent bias of employing instrumental variables. Another benefit of

our setting is that the unassigned urn did not have any information in round 1, and

thus the role for endogeneity is greatly diminished for that urn.

To further help correct for this endogeneity issue, we do subsample analysis on

individuals who correctly (in accordance with Bayesian updating) identify which

39To avoid ambiguity, we drop any observations where the second signal is precisely 50.
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side of the 50 their posterior should lie on in the first stage. In particular, if a

subject receives a signal of 40 in round 1, according to Bayesian updating, their

first round posterior should also be 40, as discussed previously. However, as long

as their first round posterior lies below 50, then ”confirming” and ”conflicting”

information will still have the same definitions as a Bayesian updater. Even though

not everyone reports stage one beliefs identical to the first signal, the vast majority of

observations do correctly infer that a signal above 50 should increase their posterior

to be above 50, and a signal below 50 should decrease their posterior to be below 50.

In particular 95% of first stage observations have this pattern, and we apply this

subsample to further reduce the potential for endogeneity, as on this subsample,

the employed definition of confirming and conflicting (which depend only on the

signals) also corresponds to an alternative definition of confirming and conflicting

(which depends on the prior beliefs).

Generally, as indicated in Table 8, subjects seem to have asymmetric beliefs for

confirming and conflicting information in the assigned urn, and seem much more

prone to attribute confirming information to their assigned urn’s state than con-

flicting information. But in the unassigned urn, the beliefs are closer to Bayesian

updating, with too little weight put on their self-reported stage 1 beliefs of urn

2. Though not significant, it appears subjects may place slightly less weight on

confirming information than confirming (i.e. confirming information weight is not

significantly different from 1, but conflicting information weight is significantly dif-

ferent from 1, p < 0.01).
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Table 8: Second Stage Beliefs: Log-Odds Ratio Framework

Dependent Variable: Assigned Urn Unassigned Urn
Log of Odds Ratio (1) (2) (3) (4) (5) (6)
(Belief Urn Follows Max) OLS OLS IV (3SLS) IV (3SLS) OLS OLS
Log Odds of 0.687∗∗∗ 0.604∗∗∗ 0.568∗∗∗ 0.566∗∗∗ 1.09 1.10
Confirming Signal (0.09) (0.10) (0.07) (0.08) (0.13) (0.12)

Log Odds 0.260∗∗∗ 0.339∗∗∗ 0.351∗∗∗ 0.364∗∗∗ 1.21 1.25
Conflicting Signal (0.10) (0.10) (0.07) (0.07) (0.07 (0.08)

Log Odds of First Stage 0.796∗∗∗ 0.826∗∗∗ 0.861∗∗∗ 0.849∗∗∗ 0.494∗∗∗ 0.498∗∗∗

Posterior Belief (0.04) (0.03) (0.02) (0.02) (0.13) (0.14)
Sample Full Sample Correct Direction Full Sample Correct Direction Full Sample Correct Direction
p-value for asymmetry 0.001 0.045 0.064 0.094 0.33 0.24
First-Stage F-Stat 6,930.6 12,665.10
Number of Observations 1185 1126 1185 1126 1188 1129
Number of Individuals 123 123 123 123 123 123
Adj-R2 0.73 0.86 0.73 0.75 0.44 0.46

Notes: The dependent variable is the log odds ratio of the belief that the assigned urn (specifications 1 through 4) or

unassigned urn (specifications 5 and 6) is following the maximum rule after observing the first signal. The independent

variable is the log odds of the signal interacted with a binary indicator for whether it was “confirming” or “conflicting”

information (on the same side of 50 as the first stage posterior belief, as described in more detail on preceding
pages). Due to ambiguity of definition, all second round signals of precisely 50 (neither confirming nor denying) are

dropped from all specifications. The “Correct Direction” subsample refers to individuals who correctly report a first

stage belief of the assigned urn in the same direction as the signal observed. All specifications report results from OLS

or IV as indicated, with standard errors in paranetheses. For OLS standard errors are clustered at the subject

(individual) level, for IV unfortunately the standard errors are not clustered, owing to limitations of stata command

reg3. Stars reference whether coefficient is significantly different from 1.0 (i.e. perfect Bayesian updating). ∗ = p < 0.1,

∗∗ = p < 0.05, ∗ ∗ ∗ = p < 0.01.
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4 Conclusion

In this experiment we set out to examine how people process potentially irrelevant

social information when they already established pre-existing beliefs from objective

information. We find strong evidence of “confirmation bias” in a ideologically neutral

context, in which subjects asymmetrically update their beliefs when presented with

information that supports those initial beliefs.

Most importantly, we try to explore the mechanism leading to this asymmetric

updating. To uncover the mechanism behind confirmation bias, we ask subjects

to report beliefs of an assigned urn, in which they have prior beliefs and a piece

of potentially irrelevant information. Crucially, they also have to report beliefs of

the irrelevant urn, by which we can visually observe the strength of weight they

put on the potentially irrelevant information. We show that subjects overly tend to

view this information as completely worthless in evaluating the assigned urn when it

conflicts their prior beliefs, but overvalue it when it confirms their prior beliefs. This

indicates that subjects may incorrectly infer that conflicting information is coming

from a source that they should ignore.

When we allow subjects to consider social information as inherently inaccurate,

the they still believe conflicting information is more likely to be coming from the

irrelevant urn. These results are robust even if we assume subjects independently

make decisions on the assigned and irrelevant urn. We find similar qualitative results

when shifting our analysis to a log-odds ratio framework in line with the literature

on motivated updating.

Although individuals in the real world may not be faced with digital urns when
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facing important policy questions, they do have to decide how much to trust different

information sources when receiving news. This process of determining ’trust’ level for

a new information source is not independent of the information received, but closely

tied to both the information and new beliefs. By explicitly modeling this ’trust’ via

information stemming from a potentially irrelevant urn, we highlight one possible

reason people may stick to their political stance or beliefs on controversial issues,

even leading to polarization. Our results suggest that dismissing new information

when it conflicts with one’s prior, via dismissing the information source, may cause

over-persistence of beliefs.
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Appendix

A First Phase Belief

The data points aligned with 45 degree line in the irrelevant urn, implying that

subjects believe the initial draw can infer both urns. Figure 9A shows that a majority

of these choices are made by different subjects and they only perform this behavior

one time. Moreover, Figure 9B shows the occurred round of these choices. They

do not concentrate on particular rounds, suggesting that such unusual behavior is

randomly made throughout the experiment and is unlikely explained by learning

effect.

Figure 9: Beliefs Aligned with 45 Degree Line in the Irrelevant Urn. (A) the Number
of Rounds (B) Occurrence Rounds.

B Second Phase Raw Data

Figure 10 shows the raw data of second phase beliefs. In particular, it is clear to see

the overreaction in the irrelevant urn.
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Figure 10: Elicited Beliefs in the Second Phase of the (A) Assigned (B) Irrelevant
Urn

C Alternative Experimental Designs

We document alternative designs that were eventually dropped. Our first experi-

mental design is inspired by Eil and Rao (2011). Subjects are asked to predict the

real value of an asset with ten possible states. The computer randomly draws with

replacement three balls from twelve, in which ten balls represent the ten possible

states and the additional two balls represent the real value. Thus, the real value is

drawn with probability 0.25 compared to others with 0.083. After observing their

private information of three ball draws, they report their beliefs of each state that

add up to 1.

Subjects then observe new information: The computer divides others into two

halves, one half whose predictions are close to and the other half whose predictions

are far from the subject, and randomly draws another subject from one of them

to reveal his/her prediction. The procedure is repeated three times, so three other

subjects’ predictions will be revealed to the subject. We elicit beliefs in terms of
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probabilities after subjects observe each piece of information using the quadratic

scoring rule. The experimental interface is shown in Figure 11.

Figure 11: Screen Shot of the First Version Experiment.

Our second experimental design is similar to the first one, but with only two

possible states. There are two urns, A and B, in the experiment. Urn A applies the

Maximum Rule and Urn B applies the Minimum Rule, so each urn reports either

maximum or minimum of two draws from the uniform distribution. We provide the

probability table in case subjects cannot figure it out themselves. Subjects observe

a ball from urn A or B with equal chance, and report the probability that the chosen

urn is A. Then, subjects observe others’ information and beliefs are elicited using

the same design as the first version.

Our third experimental design is nearly identical to our final one implemented,

but with three important differences. First of all, it is a one shot game with three

stages of belief-updating, while the final experiment has ten rounds each with one
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stage of belief-updating. In other words, subjects observe their initial draw and

then receive three other piece of information. Second, we use the BDM procedure

as in Coutts (2019) to elicit beliefs, which is illustrated in Figure 12A. Finally, the

probability for drawing each number under the Maximum Rule and Minimum Rule

is shown in tables. The experimental interface is shown in Figure 12B.

55



Figure 12: Screen Shot of Third Version Experiment.
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D Bayesian Updating Equations

D.1 Round 1 Bayesian Updating

Therefore, the probability Pr(s1|θmax) is:

Pr(s1|θmax) = Pr
({
S1
1 = s1 ∩ S2

1 < s1
}
∨
{
S1
1 ≤ s1 ∩ S2

1 = s1
})

= Pr(S1
1 = s1) Pr(S2

1 < s1) + Pr(S1
1 ≤ s1) Pr(S2

1 = s1)

=
1

100
· s1 − 1

100
+

s1
100
· 1

100
=

2s1 − 1

10000
(11)

D.2 Round 2 Bayesian Updating

Their Bayesian probabilities in the second phase are:

Pr(θmax|s1, s2) =
Pr(s1 ∩ s2|θmax) · Pr(θmax)

Pr(s1 ∩ s2)

=
Pr(s2|s1, θmax) · Pr(s1|θmax) · Pr(θmax)

Pr(s2|s1, θmax) · Pr(s1|θmax) · Pr(θmax) + Pr(s2|s1, θmin) · Pr(s1|θmin) · Pr(θmin)

(12)

Pr(ωmax|s1, s2) =
Pr(s1 ∩ s2|ωmax) · Pr(ωmax)

Pr(s1 ∩ s2)

=
Pr(s2|s1, ωmax) · Pr(s1|ωmax) · Pr(ωmax)

Pr(s2|s1, ωmax) · Pr(s1|ωmax) · Pr(ωmax) + Pr(s2|s1, ωmin) · Pr(s1|ωmin) · Pr(ωmin)

(13)

where Pr(s2|s1, θmax)

= Pr(s2|s1, θmax, ωmax) · Pr(ωmax|s1, θmax) + Pr(s2|s1, θmax, ωmin) · Pr(ωmin|s1, θmax)

= Pr(s2|s1, θmax, ωmax) ·
1

2
+ Pr(s2|s1, θmax, ωmin, s2 from A) · pA ·

1

2

+ Pr(s2|s1, θmax, ωmin, s2 from B) · pI ·
1

2
(14)
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Thus, we have

Pr(s2|s1, θmax) =
2s2 − 1

10000
· 1

2
+

2s2 − 1

10000
· 1

2
· 1

2
+

201− 2s2
10000

· 1

2
· 1

2

=
3

4
·
(

2s2 − 1

10000

)
+

1

4
·
(

201− 2s2
10000

)
Pr(s2|s1, θmin) =

1

4
·
(

2s2 − 1

10000

)
+

3

4
·
(

201− 2s2
10000

)
(15)

Equation 14 indicates the weightings that s2 is under Maximum Rule or Minimum

Rule. Since it is given the state of A is Maximum Rule, θmax, only the state of B

remains uncertain. By the settings of experimental design, there is equal chance that

s2 is either from urn A or urn B. It is the only possibility that s2 is drawn under

Minimum Rule when s2 is from urn B and urn B is applied to Minimum Rule.

Therefore, s2 is drawn under Maximum Rule with 75% chance and Minimum Rule

with 25% chance. With similar reason, we can also derive the probability in equation

15. The combination of probabilities (pA, pI) is the weights of the information source,

indicating that the probability that new information is from the assigned urn or

irrelevant urn. It is (0.5, 0.5) since the randomly drawn subject has equal chance to

be assigned to urn A or B.40

40In the experiment, subjects were assigned randomly to urns independently and were informed
about this. However, it may be possible for subjects to incorrectly infer that exactly half the
subjects were assigned to each urn, and thus the average subject would infer ex ante s2 is more
likely to comes from the unassigned urn. Yet the sample size for each session was large, about 20
subjects, so this would result in a small modification (55% urn B and 45% urn A). Importantly,
this incorrect ex ante inference would not differ by confirming and conflicting information, but to
be thorough we allow for and estimate non-equal priors as discussed in the Results section.
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The following equations show the results of Pr(s2|s1, ωmax) and Pr(s2|s1, ωmin).

Pr(s2|s1, ωmax)

= Pr(s2|s1, ωmax, θmax) · Pr(θmax|s1, ωmax) + Pr(s2|s1, ωmax, θmin) · Pr(θmin|s1, ωmax)

= Pr(s2|s1, ωmax, θmax) ·
2s1 − 1

200
+ Pr(s2|s1, ωmax, θmin, s2 from A) · pA ·

201− 2s1
200

+ Pr(s2|s1, ωmax, θmin, s2 from B) · pI ·
201− 2s1

200

s =
2s2 − 1

10000
· 2s1 − 1

200
+

201− 2s2
10000

· 1

2
· 201− 2s1

200
+

2s2 − 1

10000
· 1

2
· 201− 2s1

200

=
2s1 − 1

200
·
(

2s2 − 1

10000

)
+

201− 2s1
200

·
(

1

100

)
(16)

Pr(s2|s1, ωmin)

=
2s1 − 1

200
·
(

1

100

)
+

201− 2s1
200

·
(

201− 2s2
10000

)
(17)

Equation 16 also shows the weightings that s2 is under Maximum Rule or Minimum

Rule but given the state of urn B, ωmax, instead of the state of urn A, θmax. We can

divide the equation into two parts, the state of urn A is either Maximum Rule or

Minimum Rule. First of all, when the state of urn A is Maximum Rule, with the

probability derived in equation 12, it is for sure that s2 is drawn under Maximum

Rule. Secondly, when the state of urn A is Minimum Rule, there is equal chance to

draw s2 under Maximum Rule or Minimum Rule. Thus, the probability of observing

s2 given states of u two urns ωmax and θmin is the same as the probability of observing

s2, 1%. Equation 17 is derived by the same thoughts.
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